Figure 2.

Hitopathological evaluation of on the autotransplantation of tail vertebrae for segmental bone defect reconstruction in dogs; A: It demonstrates the defect filling by dense connective tissue and no cortex formation in control group. (H&E, 48×), B: Shows the partial, small and irregular bone lamellar formation at sides of control group defect. (H&E, 150×), C: It indicates the compact bone formation at the lower cortex and continuous osteogenesis at the upper side. Furthermore, the necrotic residues of autograft bone which has been lysing are visible, and the the middle hole filled by mesenchymal tissue. (H&E, 48×), D: Shows the hyperchromaticmesenchymal and osteoclast cells in autograft vertebrae holes of test group. (H&E, 600×), E: Represents the impaction of some caudal vertebrae holes by granulation tissue which contains new vessels. (H&E, 150×), F: Shows the osteolysis and new bone Lamellar formation of caudal vertebrae autograft residues. (H&E, 150×), G: Demonstrates the new bone lamellar formation by periosteum in test group. (H&E, 200×), H: Shows the test group intramembranous ossification. (H&E, 600×), I: indicates the test group endochondral ossification. (H&E, 600×).

Hobbenaghi et al. Diagnostic Pathology 2014 9:59   doi:10.1186/1746-1596-9-59
Download authors' original image