Email updates

Keep up to date with the latest news and content from Diagnostic Pathology and BioMed Central.

This article is part of the supplement: Proceedings of the 10th European Congress on Telepathology and 4th International Congress on Virtual Microscopy

Open Access Open Badges Proceedings

Learning regions of interest from low level maps in virtual microscopy

David Romo*, Eduardo Romero and Fabio González

Author Affiliations

Bioingenium Research Group, Universidad Nacional de Colombia,Bogotá, Colombia

For all author emails, please log on.

Diagnostic Pathology 2011, 6(Suppl 1):S22  doi:10.1186/1746-1596-6-S1-S22

Published: 30 March 2011


Virtual microscopy can improve the workflow of modern pathology laboratories, a goal limited by the large size of the virtual slides (VS). Lately, determination of the Regions of Interest has shown to be useful in navigation and compression tasks. This work presents a novel method for establishing RoIs in VS, based on a relevance score calculated from example images selected by pathologist. The process starts by splitting the Virtual Slide (VS) into a grid of blocks, each represented by a set of low level features which aim to capture the very basic visual properties, namely, color, intensity, orientation and texture. The expert selects then two blocks i.e. A typical relevant (irrelevant) instance. Different similarity (disimilarity) maps are then constructed, using these positive (negative) examples. The obtained maps are then integrated by a normalization process that promotes maps with a similarity global maxima that largely exceeds the average local maxima. Each image region is thus entailed with an associated score, established by the number of closest positive (negative) blocks, whereby any block has also an associated score. Evaluation was carried out using 8 VS from different tissues, upon which a group of three pathologists had navigated. Precision-recall measurements were calculated at each step of any actual navigation, obtaining an average precision of 55% and a recall of about 38% when using the available set of navigations.